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Narrow-Bandpass Waveguide Filters

ALI E. ATIA, MEMBER, IEEE, AND ALBERT E. WILLIAMS, ~MBER, IEEE

Abstract—A procedure is described whereby narrow-bandpass
waveguide filters having ripple in both the passbands and stopbands
can be synthesized in the form of coupled waveguide cavities.
Orthogonal modes in square or circular wavegnides are employed to
enable negative coupling elements to be realized. As a consequence,

very compact filters can be constructed. Experimental results on an
8-cavity orthogonal-mode narrow-bandpass filter are shown to agree
well with theory.

I. INTRODUCTION

I

T HAS BEEN well known since the early work on

filter synthesis by Darlington [1] and Cauer [2] that

when frequency selectivity and bandpass loss are

considered to be the important filtering properties, then

the optimum filters are those exhibiting ripple in both

passbands and stopbands.

However, the present design of narrow-bandpass

waveguide cavity filters is largely based upon the work

of Cohn [3], which realizes filters in the form of cas-

caded, synchronously tuned cavities exhibiting only

monotonically increasing out-of-band attenuation. This

restriction in filter design is principally due to the diffi-

culty in transforming the optimum low-pass ladder net-

works to coupled-cavity structures,
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Kurzrok [4] describes how extra coupling applied

between the first and last cavity of a direct-coupled

4-coaxial-cavity structure produces a zero of transmis-

sion in the stopband. Easter and PowelI [5] describe

similar filters in rectangular waveguide. Recently,

Williams [6] has illustrated the realization of the fourth-

order elliptic function in an orthogonal-mode circular-

waveguide structure.

It is the purpose of this paper to extend this work by

describing the waveguide synthesis of general filter

functions having these optimum-amplitude filtering

properties. Two structures which employ orthogonal-

mode waveguide cavities are presented, and extensive

use is made of the general coupling-cavity theory that is

outlined by Atia and Williams [7]. An experimental

8-cavity circular-waveguide bandpass filter with eight

poles and two zeros of transmission is shown to corre-

late well with theory.

II. THEORY

An account of the equivalent circuit of generally

coupled cavities was given by Reiter [8], who described

how Maxwell’s equations can be replaced by an equiva-

lent infinite system of algebraic inhomogeneous equa-

tions. However, if the frequency band of interest is

narrow, so that each cavity can be treated as a single

resonant circuit [9] with multiple couplings to other
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t %

Fig. 1. Equivalent circuit of n coupled cavities.

cavities, then the equivalent circuit reduces to that

shown in Fig. 1.

A general solution of such a narrow-band coupled-

cavity structure has been presented in a paper by Atia

and Williams [7], and, therefore, this section will only

concentrate upon those aspects of the theory that are

relevant to the synthesis of waveguide cavity filters,

With reference to the equivalent circuit, the loop equa-

tions for narrow bandwidths can be written as:

M is termed the coupling matrix and has general entries

of .M<j for i#j, and O for i =:j.

The voltage-transfer ratio of the coupled-cavity

structure can be written in the form

= = K[P(s)/Q(s)] (3)
el
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degree n, and P(S) an even polynomial {n S whose de-

gree is <(n – 2).

The general coupling theory [7] shows how the

matrix MR can be evaluated in terms of a given low-pass

transfer function, t(s) 1 (s =,jco), by first extracting the

resistance terminations from the equation,

R1 + Rn = coefficient of S“–l term of the normalized
denominator polynomial of t(s). (4)

Then, by following Darlington’s procedure [1], the

short-circuit input and transfer admittances can be ob-

tained. The poles of the short-circuit admittances are

the eigenvalues of the coupling matrix ill. The first and

last rows of a similarity transformation which gives the

matrix .M from its eigenvalues can be obtained from the

residues of the short-circuit admittances. Since F’(S) is

an even polynomial in S, it follows that the general

short-circuit coupling matrix can be placed in the form:

1 The low-pass to bandpass transformation is given by s =j(aO/AU)
(w/w -uiI/Q) =j(X/As), where X = (~ – l/~).

(lb)E = Z.9

Further, the impedance matrix Z can be expressed in

the form:

Z = (S1 + MIJ (2)

where

1 = the identity matrix

Mx=R+jM

and the matrix R has all zero entries except for the

(1, 1), (n, n) elements, which are R, and R., respectively.
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The synthesis of bandpass filters in waveguide cavi-

ties is most conveniently accomplished by assuming a

symmetrical network, i.e., RI= Rm= R, and that M is

symmetrical about the antidiagonal [as well as about

the main diagonal). Then it is advantageous to use the

even-mode coupling matrix Me of the network. (This

matrix corresponds to the excitation of the untermi-

nated network by two identical zero impedance voltage

sources applied at both ends.) It can be readily shown

that Me represents an n/2 by n/2 matrix, whose ele-

ments are obtained by folding along the center line of

the rows and columns of Il. 2 M. has the form:

i.e., first, an orthogonal T. matrix is constructed by us-

ing the Gram–Schmidt orthonormalization process, and

then a general even-mode coupling matrix JZe is eval-

uated, using the relation:

where A is a diagonal matrix whose elements are equal

to the even-mode eigenvalues.

Lastly, by applying a modification of Jacobi’s diag-

onalization process, elements of the M. matrix can be

annihilated and the required cavity-coupling matrix

can be formed.

r MIn MI’ M1,m–2 M1,4 M1,n-4 . “ “ M1,n/2 “

M1,2 M2,n--1 MZ,3 - . . . . .

Ml,n–z M2,3 M3,?L-2 - . . . . .

. . .

Me = . . . . . -“” -

. . . .

. . . . . .

. . . .

L MI,n12 “ “ “ . . . “ Mn,,,,n,,,+, .

The eigenvalues (2M) of the even-mode network are

identical in magnitude to the n/2 distinct eigenvalues of

the original network. Furthermore, a new orthogonal-

transformation matrix T, will exist in which only the

first-row elements are known. These elements are equal

to <~ times the n/2 distinct elements of the first and

last rows of the full orthogonal-transformation matrix,

and are obtained from the residues of the short-circuit

input and transfer admittances.

Quite obviously, by working with the reduced ma-

trices T. and M., computation accuracy is greatly im-

proved and computation time is significantly reduced.

The procedure follows directly that described in [7];

~ It would be equally valid to use the odd mode. The only differ-
ence would be a sign change of the folded elements. The procedure
to be described is illustrated for n even. However, the method follows
in a nearly identical manner for n odd.

(6)

For narrow-bandpass waveguide filters having ripple

in both passbands and stopbands the general low-pass

power transfer function that can be synthesized in

coupled cavities is:

\ t(s)]’=
1

(8)

where r+2m+ 1>21.

The bandpass form of this function can be realized by

the orthogonal-mode square-cavity structure shown in

Fig. 2. For the particular case where r = 2 and 1< Int

[(2nz+r)/4], t(s) can be synthesized in a direct-coupled



AITA AND WILLIAMS: NARROW-BANDPASS WAVSGUIDE FILTBRS 261

POLARIZATION FOR m EVEN

ROTATED 90° FOR m 000.

W2-1

COUPLING SCREWS /

\
,.’

(2)

sOUARE WAVEGUIOE

INPUT POLARIZATION OF

%ol ‘ODE

-t
n-1

(al

POLARIZATION FOR m EVEN

ROTATEO 90° FOR m ODD.
\

n = [4m–2); m = 1,2,3, .

COUPLING SCREWS

(2)

SOUARE WAVEGUIDE

*.

1-n- 1

POLARIZATION OF

%01 MODE

(b]

Fig. 2. (a) A general coupled-cavity filter, n =4wz, m= 1, 2, 3. (b) A general coupled-cavity filter, n.= (4w –2), m= 1, 2, 3.

square- or circular-orthogonal-cavity structure illus-

trated in Fig. 3, An extra cavity at the end of each of

these structures enables odd-order transfer functions to

be generated.s

This paper describes the synthesis procedure of an
eighth-order nonequiripple function (r= 2, m = 3, and

8The general odd-order equiripple filter functions for which
r +2WZ = 2L cannot be synthesized in a simple coupled-cavity struc-
ture.

l= 2) that can be realized in the structure shown in

Fig. 3,

III. EIGHTH-ORDER NONEQUIRIPPLE FILTER FUNCTION

With reference to (8), the eighth-order function is:

It(s)]’=
1

—– . (9)
(F+ ZI’P(S’+Z2’)’(F+Z3’)’

1+e2s4 ——
(s’+ P,’)’ (s’+P’”) ‘
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Fig. 3. Orthogonal circular-waveguide filter.

For a transmission loss of 0.05 dB at the band edge,

characteristic function zeros given by

z, = 0.00000 z, = 0.737347 z, = 0.973437

and poles given by

P, = 1.454154 P, = 1.919754

the ripple constant is e = 13.459281.

Equation (8) can be placed in the form I t(s)\ 2= t(s)

. t( –s), and the low-pass voltage transfer function t(s)

can be extracted as:

(s) = P(s)/[e. Q(s)] (lo)

where

P(s) = S4+ 5.800019s2 + 7.793130

and

Q(s) = S8 + 3.443494s7 + 7.420055s’ + 11.116641s5

+ 12.378520s4 + 10.341950s3 + 6.321218s2

+ 2.611730s + 0.579015.

With reference to (4), the normalized termination can

be immediately evaluated as:

R, + RG z 3.443494 (11)

i.e.,

R = 1.721747.

With R known it is now possible to evaluate the

short-circuit input and transfer admittances of the

network and the corresponding even-mode admittance.

Expressed in terms of the bandpass variable X, where

Au= 1,4 the even-mode admittance is given by:

4 It is most convenient to compute R and the coupling matrix M
by setting Aco = 1, since Aa acts as a scaling factor on these network
parameters,

Fig. 4. Experimental 8-cavity circular-waveguide filter.

cell cd’ C,13 ce14
Y.(A) = —+— +———— +— (12)

A — X1* A – AZ. A – i3e A – A4e

where

h,. = – 0.342867

h20 = 0.881291

A3. = – 1.330643

A4e = 1.338208

and

cell = (0.49593)2

Cal, = (0.37869)2

Cg,3 = (0.56740)2

cd, = (0.53731)’.

By recognizing that the residues (C’s) are the squares

of the first row of the orthogonal-transformation matrix

T,, and by using the Gram–Schmidt orthonormalization

process with the vectors (C,ll, C.12,C.13, C,14), (O, 1, 0,

O), (O, O, 1, O), and (O, O, 0, 1) as a basis, the general
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transformation matrix T. is obtained as;

[ 0.49593

–0.20292
T, =

–0.41581

~ -0.73484

0.37869 0.56740 0.53731

0.92552 –0.23216 –0.21985

0.00000 0,79003 –0.45050

0.00000 0.00000 0.67825 1 (13)

and the even-mode coupling matrix Me becomes:

[

0.00000 0.36060 –0.84970 0.61263

0.36060 0.73375
Me =

0.34767 –0.25067

0.84970 10.34767 –0.61821 –0.51365 “
(14)

1-0.61263 –0.25067 –0.51365 0.43046 1
—

If all ,possible couplings could be realized, then M. the coupling values of M. given in (15) to operate with

and R would represent a general solution of the eighth- a bandwidth of 37 MHz at a center frequency of 3973

order nonequiripple filter function. However, for reali- MHz. A photograph of the experimental filter is shown

zation of the transfer function in the waveguide struc- in Fig. 4, the return loss and amplitude response in

ture shown in Fig. 3; it is necessary to reduce the cou- Fig. 5, and the time delay in Fig. 6. It is important to
plings MIG, Mg6, and M,T to zero. This is achieved by ap- note that the experimental results show excellent agree-
plying successively orthogonal similarity transforma- ment with theory, and in particular the four zeros of
tions, which annihilate M.lz ( = M.J, Mw, and ~e24 transmission are present at their correct frequency posi-

(= M.42) to Mew tions in the stopband.

Two solutions can be derived: A swept frequency response of this filter between 3.7
.——

[

0.00000 – 1.09022 0.00000 0.19685

–1.09022
–M. =

0.00000 –0.74917 0.00000 1 (15)
0.00000 –0.74917 –0.01081~–O.53306

0.19685 0.00000 –0.53306 0.55680

[

0.00000 1.09713

1.09713 0.00000
–Me =

0.00000 0.58529

0.15375 0.00000

IV. EXPERIMENTAL RESULTS

In the previous section, the coupling matrix M and

the resistance termination R were evaluated for the

eighth-order function given by (9). The circular-wave-

guide structure illustrated in Fig. 3 can be constructed

to realize these parameters and, hence, the required

transfer function. This structure employs orthogonal

TE1ll circular-cavity modes in four physical cavities,

resulting in eight electrical cavities coupled in cascade.

Further, additional coupling is provided between cavi-

ties one and four, three and six, and five and eight.

From a physical point of view, it is these couplings

which provide the zeros of transmission. Couplings

MU ( = i’kf78) and MZ4 ( = M51j) are provided by screws

whose spatial orientation is arranged to provide MM

(= Mm) and ~36 with the required signs. Couplings
M23 ( = M67), M46, ~36, M14 ( = M66), and the parameter
R (which is the loaded Q of the input and output cavi-

ties) are realized by long thin coupling slots.

The design of these slots together with the cavity

dimensions are described in 16] and 110]. This pro-

cedure was employed to design an 8-cavity filter with

0.00000 o.15375i

0.58529 0.00000

1

1–0.36627 0.41800
1!

0.41800 0.91226

(16)

GHz and 6.0 GHz has been made, and the transmission

curve is shown in Fig. 7. Good correlaticm with the SpU-

rious higher order cavity modes, TM ~11at 4.86 GHz,

TEIIZ at 5.66 GHz, and TE211 at 5.80 C,HZ, is evident.

It is important to note that because of the filter’s geo-

metrical symmetry, no circular TM ~10mode is propa-

gated (at least not above 70 dB) at 4.2 G,Hz through the

filter. This type of spurious transmission response for

the orthogonal-mode filter is similar to that shown by

conventional waveguide designs.

The measured expanded in-band loss of the filter in

Fig. 6 shows a center-frequency loss of 0.4 dB which

corresponds to an average Q of 10 000. This loss is sig-

nificantly less than that which could be achieved by a

comparable Cheb yshev or Butterworth waveguide filter

(approximately 1.5 dB), and clearly demonstrates the
low-loss properties of the near-optimum transfer func-

tion.

V. CONCLUSION

A method of synthesizing filter transfer functions

having ripple in both their passbands and stopbands in
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the form of coupled waveguide cavities has been pre-

sented. By using orthogonal modes in circular- or

square-waveguide cavities, both positive and negative

coupling values can be realized. An 8-cavity filter was

constructed and the experimental results obtained from

it; including the spurious responses, agree well with

theory.

The type of filter described has the advantage of hav-

ing lower loss than a similar Chebyshev or Butterworth

design, besides being approximate y half the size and

weight. It is interesting to note that Chebyshev and

Butterworth filters can also be constructed by using the

orthogonal-mode-cavity structure.
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