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Narrow-Bandpass Waveguide Filters

ALI E. ATIA, MeEMBER, IEEE, AND ALBERT E. WILLIAMS, MEMBER, IEEE

Abstract—A procedure is described whereby narrow-bandpass
waveguide filters having ripple in both the passbands and stopbands
can be synthesized in the form of coupled waveguide cavities.
Orthogonal modes in square or circular waveguides are employed to
enable negative coupling elements to be realized. As a consequence,
very compact filters can be constructed. Experimental results on an
8-cavity orthogonal-mode narrow-bandpass filter are shown to agree
well with theory.

I. INTRODUCTION

T HAS BEEN well known since the early work on
I[ filter synthesis by Darlington [1] and Cauer [2] that

when frequency selectivity and bandpass loss are
considered to be the important filtering properties, then
the optimum filters are those exhibiting ripple in both
passbands and stopbands.

However, the present design of narrow-bandpass
waveguide cavity filters is largely based upon the work
of Cohn [3], which realizes filters in the form of cas-
caded, synchronously tuned cavities exhibiting only
monotonically increasing out-of-band attenuation. This
restriction in filter design is principally due to the diffi-
culty in transforming the optimum low-pass ladder net-
works to coupled-cavity structures.

Manuscript received April 5, 1971; revised July 16, 1971. This
paper is based upon work performed in COMSAT Laboratories
under Corporate sponsorship.
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Kurzrok [4] describes how extra coupling applied
between the first and last cavity of a direct-coupled
4-coaxial-cavity structure produces a zero of transmis-
sion in the stopband. Easter and Powell [5] describe
similar filters in rectangular waveguide. Recently,
Williams [6] has illustrated the realization of the fourth-
order elliptic function in an orthogonal-mode circular-
waveguide structure.

It is the purpose of this paper to extend this work by
describing the waveguide synthesis of general filter
functions having these optimum-amplitude filtering
properties. Two structures which employ orthogonal-
mode waveguide cavities are presented, and extensive
use is made of the general coupling-cavity theory that is
outlined by Atia and Williams [7]. An experimental
8-cavity circular-waveguide bandpass filter with eight
poles and two zeros of transmission is shown to corre-
late well with theory.

II. THEORY

An account of the equivalent circuit of generally
coupled cavities was given by Reiter [8], who described
how Maxwell’s equations can be replaced by an equiva-
lent infinite system of algebraic inhomogeneous equa-
tions. However, if the frequency band of interest is
narrow, so that each cavity can be treated as a single
resonant circuit [9] with multiple couplings to other
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cavities, then the equivalent circuit reduces to that
shown in Fig. 1.

A general solution of such a narrow-band coupled-
cavity structure has been presented in a paper by Atia
and Williams [7], and, therefore, this section will only
concentrate upon those aspects of the theory that are
relevant to the synthesis of waveguide cavity filters.
With reference to the equivalent circuit, the loop equa-
tions for narrow bandwidths can be written as:

€1 ~S + R, lez jM13
My S M
My My S
= i
_0 - L. ]Mln
or
E=2g (1b)
where

. 1
S=jlew—-
(&)
IM i = joM; = jooM i
wo = 1 rad/s.
Further, the impedance matrix Z can be expressed in
the form:
Z = (SI + Mz) (2)
where
I = the identity matrix
Mg =R++jiM

and the matrix R has all zero entries except for the
(1, 1), (n, n) elements, which are R; and R,, respectively.

M3 o

Equivalent circuit of # coupled cavities.

M is termed the coupling matrix and has general entries
of M;; for 2544, and 0 for 7=j7.

The wvoltage-transfer ratio of the coupled-cavity
structure can be written in the form

1R

= K[P($)/0()] Q)

€

where K is a constant, Q(S) is Hurwitz polynomial of

len— ’— 7:1 7]
iz
13
(1a)
S jMn—l,n in—l
jMn—l,n S + Rn_ — in -

degree #, and P(S) an even polynomial i in S whose de-
gree is <(n—2).

The general coupling theory [7] shows how the
matrix Mr can be evaluated in terms of a given low-pass
transfer function, #(s)! (s=jw), by first extracting the
resistance terminations from the equation,

R1+Rn

+

= coefficient of s*~! term of the normalized
denominator polynomial of (s).

(4)

Then, by following  Darlington’s procedure [1], the
short-circuit input and transfer admittances can be ob-
tained. The poles of the short-circuit admittances are
the eigenvalues of the coupling matrix M. The first and
last rows of a similarity transformation which gives the
matrix M from its eigenvalues can be obtained from the
residues of the short-circuit admittances. Since P(.S5) is
an even polynomial in S, it follows that the general
short-circuit coupling matrix can be placed in the form:

! The low-pass to bandpass transformation is given by s =j7(we/Aw)
(w/ws—wo/w) =j(N/Aw), where A = (w—1/w).
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The synthesis of bandpass filters in waveguide cavi-
ties is most conveniently accomplished by assuming a
symmetrical network, i.e., Ri=R,=R, and that M is
symmetrical about the antidiagonal (as well as about
the main diagonal). Then it is advantageous to use the
even-mode coupling matrix M, of the network. (This
matrix corresponds to the excitation of the untermi-
nated network by two identical zero impedance voltage
sources applied at both ends.) It can be readily shown
that M, represents an #/2 by #/2 matrix, whose ele-
ments are obtained by folding along the center line of
the rows and columns of M.2 M, has the form:

B Ml,n M1,2 Ml,n-—-2
M1,2 M2,n~—1 M2.3
Ml,n—Z M2.3 M3,n—2
M, =
L Ml.n/2

The eigenvalues (\;) of the even-mode network are
identical in magnitude to the #/2 distinct eigenvalues of
the original network. Furthermore, a new orthogonal-
transformation matrix 7, will exist in which only the
first-row elements are known. These elements are equal
to 4/2 times the n/2 distinct elements of the first and
last rows of the full orthogonal-transformation matrix,
and are obtained from the residues of the short-circuit
input and transfer admittances.

Quite obviously, by working with the reduced ma-
trices T, and M,, computation accuracy is greatly im-
proved and computation time is significantly reduced.
The procedure follows directly that described in [7];

2 It would be equally valid te use the odd mode. The only differ-
ence would be a sign change of the folded elements. The procedure
to be described is illustrated for » even. However, the method follows
in a nearly identical manner for # odd.

M4
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0 Mn—l.n
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i.e., first, an orthogonal T, matrix is constructed by us-
ing the Gram—Schmidt orthonormalization process, and
then a general even-mode coupling matrix M, is eval-
uated, using the relation:

_Me = TeATet (7)

where A is a diagonal matrix whose elements are equal
to the even-mode eigenvalues.

Lastly, by applying a modification of Jacobi's diag-
onalization process, elements of the M, matrix can be
annihilated and the required cavity-coupling matrix
can be formed.

Mina M1

(6)

Mn/Z,(n!2)+1 -

For narrow-bandpass waveguide filters having ripple
in both passbands and stopbands the general low-pass
power transfer function that can be synthesized in
coupled cavities is:.

L) ]2 = ®)

m

H (s2 + 22)?

k=1

14 e(—1)rs?

1

11 Gs* + 2s®)°
k=1

where r4-2m-+4-12>21.

The bandpass form of this function can be realized by
the orthogonal-mode square-cavity structure shown in
Fig. 2. For the particular case where r=2 and [< Int
[(2m~+7r)/4], t(s) can be synthesized in a direct-coupled
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Fig.2. (@A gengral coupled-cavity filter, n =4m, m=1, 2, 3. (b) A general coupled-cavity filter, = ({Am—2), m=1, 2, 3.

square- or circular-orthogonal-cavity structure illus- [/=2) that can be realized in the structure shown in

trated in Fig. 3. An extra cavity at the end of each of Fig. 3.

these structures enables odd-order transfer functions to

be generated.? III. ErceETH-ORDER NONEQUIRIPPLE FILTER FUNCTION
This paper describes the synthesis procedure of an

. e - With reference to (8), the eighth-order function is:
eighth-order nonequiripple function (r=2, m =3, and

1

| us) 2= . 9)
3 The general odd-order equiripple filter functions for which '1+ - (2 Z12)2(s2+ Z22) (s + Z5%)*

r+2m =2l cannot be synthesized in a simple coupled-cavity struc- () ;

ture. P Y (s2_;_ P12)2(5‘2—|—P2'2)2
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Fig. 3.  Orthogonal circular-waveguide filter.

For a transmission loss of 0.05 dB at the band edge,
characteristic function zeros given by '

Z1 = 0.00000 Zs = 0.737347 Z; = 0.973437
and poles given by
Py = 1454154 Py = 1.919754

the ripple constant is e =13.459281.

Equation (8) can be placed in the form [t(s)[ 2=4(s)
-t(—s), and the low-pass voltage transfer function #(s)
can be extracted as:

t(s) = P(s)/[e-Q(s)] (10)

where
P(s) = st + 5.800019s2 + 7.793130
and

Q(s) = s® + 3.44349457 + 7.420055s% 4 11.1166415°
+ 12.378520s* 4 10.341950s% 4 6.3212185?
—+ 2.611730s + 0.579015.

With reference to (4), the normalized termination can
be immediately evaluated as:

Ry + Re = 3.443494 (11)

ie.,

R = 1.7217417.

With R known it is now possible to evaluate the
short-circuit input and transfer admittances of the
network and the corresponding even-mode admittance.
Expressed in terms of the bandpass variable \, where
Aw=1,* the even-mode admittance is given by:

¢ It is most convenient to compute R and the coupling matrix
by setting Aw =1, since Aw acts as a scaling factor on these network
parameters.

Fig. 4. Experimental 8-cavity circular-waveguide filter,

Ye()\) _ Cell Cel2 C813 C614 (12)
A—Ae A—Azx A=Az A— A
where
Ao = — 0.342867
Ao, =  0.881291
Aze = — 1.330643
Aee = 1.338208

and

Con = (0.49593)2
Caz = (0.37869)2
Cots = (0.56740)2
Cos = (0.53731)2,

By recognizing that the residues (C’s) are the squares
of the first row of the orthogonal-transformation matrix
T, and by using the Gram-Schmidt orthonormalization
process with the vectors (Coi, Ceas, Cas, Ce), (0, 1, 0,
0), (0, 0, 1, 0), and (0, O, 0, 1) as a basis, the general
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transformation matrix T, is obtained as:

- 0.49503 0.37869
—0.20292 0.92552
Te=1 01381 0.00000
| —0.73484 0.00000
and the even-mode coupling matrix M, becomes:
-0.00000  0.36060
0.36060  0.73375
Me=1 081970 034767
| 0.61263 —0.25067

If all possible couplings could be realized, then M,
and R would represent a general solution of the eighth-
order nonequiripple filter function. However, for reali-
zation of the transfer function in the waveguide struc-
ture shown in Fig. 3; it is necessary to reduce the cou-
plings Mg, Mss, and My, to zero. This is achieved by ap-
plying successively orthogonal similarity transforma-
tions, which annihilate Mes (= Mea1), Mes, and M
(= Me42) to Me.

Two solutions can be derived:

0.00000
—1.09022

0.00000
L 0.19685
I~ 0.00000
1.09713
0.00000
| 0.15375

il

—0.749

0.000
1.09713
0.00000
0.58529
0.00000

IV. EXPERIMENTAL RESULTS

In the previous section, the coupling matrix M and
the resistance termination R were evaluated for the
eighth-order function given by (9). The circular-wave-
guide structure illustrated in Fig. 3 can be constructed
to realize these parameters and, hence, the required
transfer function. This structure employs orthogonal
TE circular-cavity modes in four physical cavities,
resulting in eight electrical cavities coupled in cascade.
Further, additional coupling is provided between cavi-
ties one and four, three and six, and five and eight.
From a physical point of view, it is these couplings
which provide the zeros of transmission. Couplings
My (=Mz) and My, (= My) are provided by screws
whose spacial orientation is arranged to provide My
(=Ms) and My with the required signs. Couplings
Mos (= Mgq), Mss, Mze, M1s (= M), and the parameter
R (which is the loaded Q of the input and output cavi-
ties) are realized by long thin coupling slots.

The design of these slots together with the cavity
dimensions are described in [6] and [10]. This pro-
cedure was employed to design an 8-cavity filter with

—1.09022
0.00000

263
0.56740 0.53731 W
—0.23216 —0.21985 (13)
0.79003 —0.45050
0.00000 0.67825 _
—0.84970 0.61263 7
0.34767 —0.25067 (14)
—0.61821 —0.51365
—0.51365 0.43046 |

the coupling values of M, given in (15) to operate with
a bandwidth of 37 MHz at a center frequency of 3973
MHz. A photograph of the experimental filter is shown
in Fig. 4, the return loss and amplitude response in
Fig. 5, and the time delay in Fig. 6. It is important to
note that the experimental results show excellent agree-
ment with theory, and in particular the four zeros of
transmission are present at their correct frequency posi-
tions in the stopband.

A swept frequency response of this filter between 3.7

0.00000  0.19685
—0.74917  0.00000
17 —0.01081L_—0.53306
00 —0.53306  0.55680
0.00000 0.15375,
0.58529 0.00000
—0.36627 0.41800
0.41800 0.91226

(15)

(16)

GHz and 6.0 GHz has been made, and the transmission
curve is shown in Fig. 7. Good correlation with the spu-
rious higher order cavity modes, TMg; at 4.86 GHz,
TEy; at 5.66 GHz, and TEs; at 5.80 GHz, is evident.
It is important to note that because of the filter's geo-
metrical symmetry, no circular TMg, mode is propa-
gated (at least not above 70 dB) at 4.2 GHz through the
filter. This type of spurious transmission response for
the orthogonal-mode filter is similar to that shown by
conventional waveguide designs.

The measured expanded in-band loss of the filter in
Fig. 6 shows a center-frequency loss of 0.4 dB which
corresponds to an average Q of 10 000. This loss is sig-
nificantly less than that which could be achieved by a
comparable Chebyshev or Butterworth waveguide filter
(approximately 1.5 dB), and clearly demonstrates the
low-loss properties of the near-optimum transfer func-
tion.

V. CONCLUSION

A method of synthesizing filter transfer functions
having ripple in both their passbands and stopbands in
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the form of coupled waveguide cavities has been pre- REFERENCES

sented. By using orthogonal modes in circular- or
square-waveguide cavities, both positive and negative
coupling values can be realized. An 8-cavity filter was
constructed and the experimental results obtained from
it, including the spurious responses, agree well with
theory.

The type of filter described has the advantage of hav-
ing lower loss than a similar Chebyshev or Butterworth
design, besides being approximately half the size and
weight. It is interesting to note that Chebyshev and
Butterworth filters can also be constructed by using the
orthogonal-mode-cavity structure.
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